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Abstract-A theory of large deformations of straight slender in-plane beam is presented, based
on the assumption of uniaxiality of the strain tensor. The integration of the compatibility con
ditions gives the parabolic variation of the axial component of the strain tensor over the cross
section of the beam. The integration of the kinematic equations gives linear variation of the
displacement components over the cross-section. The equilibrium equations are written on a
deformed configuration and numerically solved for linear elastic cantilever, subjected to con
centrated or distributed conservative and nonconservative loads,

I, INTRODUCTION

The majority of theories of large deformations of slender beams is based on the Ber
noulli-Euler hypothesis that the cross-sections which are perpendicular to the centroid
locus before bending remain plane and perpendicular to the deformed locus and suffer
no strains in their planes[1, 2]. This hypothesis is equivalent to assuming a linear var
iation of displacements over the cross-section.

The present paper presents an alternative theory based on the hypothesis that the
strain tensor is uniaxial. By using the hypothesis in the compatibility conditions, these
may be analytically integrated, giving the parabolic variation of the axial component
of the strain tensor over the cross-section. When the parabolic variation of the axial
strain is employed, the integration of the kinematic equations gives linear variation of
the displacements over the cross-section. This shows that the present hypothesis leads
to the Bernoulli-Euler beam.

The associated equilibrium equations are given in Section 3. These equations have
been numerically solved for a linear elastic material and a cantilever beam subjected
to conservative or nonconservative loads. The numerical procedure and numerical
examples are presented in Sections 4 and 5.

2. DISPLACEMENTS DETERMINATION

Let the locus of the centroid of the cross-section of the undeformed beam be a
straight line, and let it coincide with Zl axis of the Cartesian coordinate system (Zl, Z2,

Z3) with el, e2, e3 as the unit base vectors. Let the cross-section SPI) of the beam in the
coordinate plane Zl = const be symmetric with respect to the coordinate plane Z2 =

O. The Lagrangian description is used with the initial undeformed configuration
taken as reference. A material particle is identified by material coordinates Xl == X, x2

== y and x3 == z, which coincide with the Cartesian coordinates Zl, Z2, Z3 in the reference
configuration. The material base vectors in the reference and in the current deformed
configuration are denoted by gl, g2, g3 and GI , G2 , G3 (Fig. 1).

We now introduce the assumption that the components 'Y12, 'Y13, 'Y22, 'Y23 and 'Y33

of the Lagrangian strain tensor may be neglected in comparison with the component
'YII. Hence

'Y12

'YII(X, z),

'Y13 = 'Y22 = 'Y23 = 'Y33 = O.

(1)

(2)

The covariant and contravariant components of the deformed metric tensor, Gij and
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Fig. I. Beam element. Initial and deformed configurations. Coordinate systems and base vec
tors.

Gij, are determined by the equations

(3)

(4)

where gij denotes the covariant components of the undeformed metric tensor. The
application of (1) and (2) in (3) and (4) gives

Gil I + 2"{!1,

G22 G33 I , (5)

GI2 G13 :::= G23 O.

and

Gil I

+ 2"{!!
,

G22 G33 I , (6)

GI2 G13 :::= G23 = O.

The components (1) and (2) of the strain tensor must satisfy compatibility condi
tions. These require vanishing of the components of the Riemann-Christoffel curvature
tensor Rijkl in a deformed configuration[3]:

RUkl = "{jl.ik - "{iI..ik - "{jk.iI + "{ik.JI - Ga(3 [("{J(3.k + "{k(3,j - "(Jk.(3) ("{ia.!

- "{Ia,i - "(iI.a) - ('Y.if3.! + "{/f3..i - "(JI.(3) ("{ia.k + "{ka.i - "(ik.a)] O. (7)
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(" ,i" designates a partial derivative with respect to material coordinate :t.) Substituting
(1), (2) and (6) into (7) yields

the remaining conditions being identically satisfied. Solving eqn (8) for 'YII gives

I
'YII(X, z) = "2 {[A(x)z + B(x)F - l}

(8)

(9)

where the particular form of the integration functions A (x) and B(x) depends on actual
load, geometry, material properties and boundary conditions. Equation (9) shows that
the strain component 'YII may vary over the cross-section quadratically with respect
to z.

The contravariant components u l and u3 of the displacement vector u ofan arbitrary
material particle

(10)

and its covariant components UI and U3 are related to the components of the strain
tensor by the kinematic relations

I k
'Y .. = - (u· . + u· . + u,· . U .).IJ 2 I.J .1.1 h.I ../ (11)

U3 , in eqn (11), afterEmploying eqns (2) and (9) and the fact that UI = u l and U3
multiplying by 2 gives

2'Y1I = 2u~, + (U~d2 + (u:d2 = (B2 - I) + 2ABz + A 2Z2, (12)

2'Y13 = U~3 + U:I + U~IU~3 + U:IU:3 = 0, (13)

2'Y33 = 2U:3 + (U~3? + (U:3? = 0, (14)

'Y12 = 'Y13 = 'Y23 == 0. (15)

The eqns (12)-(14) constitute a system of three nonlinear partial-differential equations
for the two displacement components u l (x, z) and u3 (x, z). The existence of single
valued solution of the system has been assured by satisfying the compatibility eqns (7)
and (8).

Equations (12)-(14) may be solved explicitly by the substitution in a form of poly
nomial:

UI(x, z) = lXo(x) + lXl(X)Z + lX2(X)Z2 +

u3(x, z) = l3o(x) + I3I(x)z + 132(x)z2 + + 13" (x)z" .

(16)

(17)

From eqns (14), (16) and (17) we obtain the system of algebraic equations

(14): Zo 2131 + lXT + I3T = 0,

Zl 4132 + 4lXIlX2 + 4131132 = 0,

for p = m = n ~ 2,
for p = m ~ nand m;:3 2,
for p = n ~ m and n;:3 2.

(18)

(19)

(20)
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Equation (20) requires
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am = 0,

13" = O.

(21)

Using (21) in (19) implies that ai = 0 and l3i = 0 for i ~ 2. Hence

Applying (22) and (23) in (12) and (13), leads

(22)

(23)

(12):

(13):

2ao + a02 + 1302 = B2
- I,

2a; + 2aoa; + 213013; = 2AB,

al + 130 + a()al + 13(113. = 0,

13; + ajal + 13; 13. o.

(24)

(25)

(26)

(27)

(28)

(The prime' denotes differentiation with respect to x.) The nonlinear differential equa
tions (24)-(28) and algebraic equation (18) constitute a system of six equations for four
unknown functions ao, ai, 130 and 131. This system may be solved explicitly by first
solving (18) and (26) for al and 131, and then integrating (25) and (27) for ao and 130.
The integration gives

ao(x) = u1(xo, 0) + L~ [B(~) cos w(~)

l3o(x) = u 3 (xo. 0) - L~ B(~) sin w(O d~,

aleX) = sin w(x),

I3I(x) = cos w(x) - I,

I] d~. (29)

(30)

(1)

(2)

where u· (xo. 0) and u3 (xo, 0) are the displacement components. evaluated at the ref
erence material particle (xo, 0), and the notation w(x) has been introduced:

I x (iJUI)
w(x) = xo A(~) d~ + arcsin a; x=xo • (3)

where (iJul/iJz)x=xo designates the displacement derivative at the reference particle (xo,
0).

The base vectors of the deformed configuration are determined from the dis
placements by the relation

(34)

(87' denotes the Kronecker symbol.) Combining eqns (22)-(23), (29)-(33) and (34) gives
the covariant base vectors

G. = (w'z + B) (gl cos w - g3 sin w),

G2 = g2

G3 = gJ sin w + g3 cos W.

(35)
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The associated contravariant base vectors are

G 1 = I 1 R (gl cos W - g3 sin w),
wz+

GZ = gz

G 3 = gl sin w + g3 cos W.

1185

(36)

The functions A(x) and R(x) have physical significance. A physical meaning of A is
found by comparing deformed and undeformed directions of centroidal axis. It is then
established that A is the derivative of the centroid axis rotation Ip with respect to x:

Hence

A(x) = Ip'(x).

Ip(x) = w(x).

(37)

(38)

Physical character of R is shown by employing eqn (5) in the expression for unit ex
tension D t :

Introducing notation e for unit extension of centroid axis

e(x) = D 1(z = 0) = R - 1

gives

R(x) = 1 + e(x).

(39)

(40)

(41)

The results obtained in this section indicate that, as a consequence of assumptions
(1) and (2), the deformation of the beam is described by the two functions Ip(x) and
e(x), the rotation and the unit extension of the centroid axis of the beam; that the
displacement components u t and u3 vary linearly over the cross-section; initially un
deformed planar cross-section remains planar and perpendicular to the locus of cen
troids after deformation; its shape and its area are preserved (5(\) = S?\). The as
sumptions (1) and (2) lead therefore to the Bernoulli-Euler hypothesis.

3. EQUILIBRIUM EQUATIONS

Within the framework of static analysis the equilibrium equations for a beam are
given by the differential equations

dN
dx + ClP = 0,

dMfu + Gt X N + .M, = o.

(42)

(43)

Nand M are the stress resultants vectors at the cross-section of the beam, given by
the expressions

Gt G
N=N--+Q_3-

VGi' VG;;'

M=M~,
VG;;

(44)

(45)
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where N, Q and M denote axial force, shear force and bending moment of the cross
section. ~ and..« are distributed external force and moment per unit undeformed length

~ = !J>bg] + !J>fig3'

..« = .Mogz.

G1 denotes the base vector G] at z = 0:

(46)

(47)

(48)

Substituting eqns (44) and (45) into (42) and (43), and employing (35), (36), (38) and
(41) yields

N = R' cos 'P - R 3 sin 'P

Q = R' sin'P + R 3 cos 'P,

dM
dx - Q(I + E) + .Mo = O.

(49)

(50)

(51)

R' and R 3 are the components of the negative external load resultants at x with respect
to a reference coordinate Xo:

R' = [N cos 'P + Q sin 'P]x=X(} - L: !J>bW d~,

R 3
= [- N sin 'P + Q cos 'P]x=X(} - L: !J>M~) d~.

(52)

(53)

The constitutive law for material is assumed to be given by a linear elastic relation
between the longitudinal' 'true" stress component CT(,) and the associated unit extension
D,

(54)

where L is elastic modulus of material. Using relations (54), (39) and (41), Nand M
take the form

f od'P
M = z CT(J) dS = LI" -d '

SIll . x

(55)

(56)

where I~ is the moment of inertia of the cross-section with respect to the y axis. Elim
ination of N, Q, M and E from (51) by employing eqns (49), (50), (51), (55) and (56),
gives the differential equation for 'P

(57)

Introducing notation u = u I (z = 0) and w = u3 (z = 0) for the displacement components
along the centroid axis, and using eqns (22)-(23) and (29)-(33), yields

u(x) = u(xo) + L: [(I + E) cos 'P - I] d~,

w(x) = w(xo) - L: (I + E) sin 'P d~.

(58)

(59)
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Equations (49)-(51), (55), (56), (58) and (59) constitute a system of seven equations for
seven unknown functions N, Q, M, 'P, E, U and w. These equations can be solved
uniquely for the prescribed geometric characteristics, material parameter, boundary
conditions and external loads.

4. METHOD OF SOLUTION

We consider a cantilever beam of undeformed length, I, subject to concentrated
or distributed conservative and nonconservative loads, whose equilibrium is governed
by the differential equation (57). This equation is solved here by the finite difference
method. The integration region x E [0, l] is divided into n equal subregions by n + 1
equally spaced nodes 1,2, 3, ... , n + 1 with the coordinates XI = 0, X2 = h, X3 =
2h, ... ,Xn + I = I, then the differential equation is replaced by the difference equation
in each node. By utilizing the lowest-order difference approximation for the second
derivative, the differential equation (57), written for a typical node "i", takes the form

LIo
h: ('Pi+ I - 2'Pi + 'Pi- d - (RI sin 'Pi + Rr cos 'PJ

x [1 + _1_ (R! cos 'P. - R~ sin 'P.)] + Moi = 0, (60)LS?1) I I I I

where h = lin, and 'Pi, RI, Rr and MOi are the values of 'P, R I
, R3 and Mo at the node

i. By writing eqn (60) at n + 1 nodes, and taking into account appropriate static and
kinematic boundary conditions at X = 0 and x = I, a system of nonlinear transcendental
equations for nodal values 'Pi is obtained. This system has been solved iteratively,
employing the Newton method.

Special case. There is a special case when the procedure gives the system of
nonlinear equations, the solution of which requires no iteration and is given by simple
recurrence formula. It is the case when the cantilever is subject, at its free end, only
to the tangential (TI ) and normal (Pd forces and to the moment (Zd, and to the dis
tributed moment (Mo) acting along the axis of the beam. Let us take a detailed look
at the case.

We introduce the relative rotation

<p(x) = 'P(x) - 'PI (61)

('PI stands for rotation of the node 1), put g>A = g>ij = 0 and employ (61), (52) and (53)
in the eqn (57) and thus get

LI~~S + (T I sin<p + PI cos<p) [ 1 + L~?l) (- T I cos<p + PI sin<P)] + Mo = O. (62)

When replaced by their difference equations in node 1, the eqn (62) and its boundary
condition

(63)

(64)

give two equations for three nodal values: <Po (at the auxiliary node at x - h), <PI
and <P2. Because <PI is zero by the definition (61), the two equations can be solved for
<Po and <P2' obtaining

h
<Po = LIo ZI

y

<PI = 0,

<P2 = - L~~ ZI - 21~~ PI (1 - L~?l) T I ) - ::.~~ Mol.

(65)

(66)
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Application of the above equations in the difference form of eqn (62) gives the re
currence formula from which the remaining relative nodal rotations are evaluated:

<Pi + I
h2

2<pi - <Pi- I - -10 (T1 sin <Pi + PI cos <p;)
L y

x [1 + L~PI) (- TI cos <Pi + PI sin <Pi) ] - L~~ AtOi '

i = 2,3, ... ,n. (67)

When boundary condition at the clamped end, 'Pn+ I = 0, is taken into account and
eqn (61) employed, nodal rotations 'Pi are obtained.

In terms of these values the nodal values of axial force, shear force, bending
moment, unit extension of centroid axis and displacements are found by applying eqns
(49), (50), (56), (55), (58) and (59). The trapezoidal formula has been used for the in
tegration of the integrals (58) and (59).

5. NUMERICAL EXAMPLES

Example 1: a cantilever subjected at its free end to the moment (Z,)
We consider a cantilever of length I subjected to the moment ZI at its free end, x

= 0, and clamped at x = I. Employing R I = 0, R 3 = °and Ato = °in eqn (57),
integrating and taking into account the boundary conditions 'P'(O) = -ZI/LI~ and

!. L

~
K ZlL = 100

St1}= 20 1 366.52

~
2 1099.561y = 1.6667 3 2199.11

(;Z1
L = 2.1 x 104

-- Exact Solution

0 Numerical Solution

n = 5

0 fo:3
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v
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50 / \
~ . 2

0 25 50 75 100

Fig. 2. Cantilever subjected at its free end to the moment (ZI). Deformed shapes.
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Fig. 4. Cantilever subjected at its free end to normal force (Pd. Effect of subdivision number
n on deformed shape for PI = 25.2 (curve I), PI = 80.0 (curve 2) and PI = 120.0 (curve 3).

'P(l) 0, gives

'P(X) = 'PI (I - ~) ,
ZIt

'PI = LI~ .

(68)

(69)

Substituting eqn (68) into (58) and (59), integrating and using the boundary conditions
u(l) = °and w(l) = 0, yields

u(x) = ;1 { - sin[ 'PI (I - 7) ] + 'PI (I - 7)},
w(x) = ;1 {I - cos[ 'PI (I - 7) J} .

(70)

(71)

These equations show that the exact deformed shape of the cantilever is a part of a
circle with the curvature K

(72)
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Figure 2 shows the deformed shapes for various loading stages, obtained by applying
the exact solution, eqns (70) and (71) (solid lines). They are compared to the shapes
given by the numerical procedure defined by eqns (64)-(67) with n = 5. Considering
that n = 5 is a coarse subdivision, the discrepancies are very small. When taking n =
20, the obtained deformed shapes are indistinguishable from the curves given by the
exact solution.

Example 2: a cantilever subjected at its free end to normal force (PI)
Figure 3 shows the deformed shapes of the cantilever subjected at its free end to

the force PI, the direction of which remains perpendicular to the centroid axis through
out the deformation. The shapes have been obtained by applying eqns (64)-(67) with
n = 50. They are displayed up to the force value PI = 134.0 when, as shown in [4],
the dynamic instability takes place. The deformed cantilever shapes have been com
pared to the closed-form solution of Lau[5], expressed in the form of elliptic integrals
and to the limited results of Baumeister and Sebrosky[6] given in a graphical form as
design charts. Both references assume inextensibility of the cantilever. A complete
agreement has been found between the exact solutions [5] and [6] and the present
solution. This also shows that the extensibility of the cantilever plays no role in a
deformation of the cantilever under consideration. The deformed shapes have also been
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normalized horizonal and vertical free-end displacements, /l,1i and w,lI.
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compared to the finite element results of Argyris and Symeonidis[4]. They used 10
finite elements. The comparison is shown in Fig. 3. There is a rather good agreement
between the two solutions.

Figure 4 displays the effect of the subdivision number, n, on the accuracy of the
present method. The deformed shapes obtained with n = 50 for the forces PI = 25.2,
80.0 and 120.0, are drawn in the figure and compared to the shapes calculated by
employing n = 5 (in the figure marked by circles) and n = 10 (marked by full circles).
Considering that the solution with n = 50 represents the accurate solution, the in
accuracies obtained with relatively coarse subdivisions n = 5 and n = 10, for the
curves 1 and 2, are very small. The discrepancies are however substantial for n = 5
and PI = 120.0, as illustrated by the figure.

Figure 5 shows normalized horizontal and vertical displacements, udl and wdl,
of the free end of the cantilever, as a function of the normalized load, P1[2/ LI2.

Example 3: a cantilever subjected to uniformly distributed normal force (q3) per unit
undeformed length

Figure 6 shows the deformed shapes of the cantilever subjected to the uniformly
distributed force whose direction remains perpendicular to the centroid axis throughout
the deformation. The shapes have been obtained by applying the difference method in

K q3

r ~l 1 0.05
2 0.10
3 0.20
4 0.30

l = 100 5 0.40
5(1)= 20 6 0.50

1y = 1.6667 7 0.60
8 0.70

L = 2.1 x 104
9 0.80

10 0.90
'1 0.96

o

25

50

75

o [4J n =50

'-':F::::::::----1---r.-.11

--+---.10

o 25 50 75 100 125

Fig. 6. Cantilever subjected to uniformly distributed normal force (q~) per unit undeformed
length. Deformed shapes.
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conjunction with the Newton iteration for the solution of eqn (60), and n = 50. They
are shown up to the traction value q3 = 0.96 when the dynamic instability takes place[4].
The deformed shapes have been compared to the closed-form solution of Mitchell[7],
expressed in the form of elliptic integrals. His solution assumes inextensibility of the
cantilever. A complete agreement has been found. The deformed shapes have also been
compared to the finite-element results[4]. The comparison is shown in Fig. 6.

Figure 7 shows normalized horizontal and vertical displacements, udl and WIll,
of the free end as a function of the normalized traction q3[3I LI2.

Example 4: a cantilever subjected at its free end to horizontal force (HI)
Figure 8 shows the buckled shapes at various forces above the second buckling

load. A small vertical force (VI) and a moment (2.) at the free end were applied and
later removed to initiate the deforming into the second buckling mode.

6. CONCLUSIONS

1. A theory of large deformations of straight slender in-plane beam is presented,
based on the assumption of uniaxiality of the strain tensor. By using this assumption,
compatibility conditions are reduced to one differential equation which is analytically
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L = 2.10 x 105 11 2.126 0 0
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o 10 2.0 3.0 4.0 5.0 6.0

Fig. 8. Cantilever subjected at its free end to horizontal force (Hil above the second buckling
load. Deformed shapes.

integrated, giving the strain which depends on two arbitrary deformation functions of
the longitudinal coordinate and varies parabolically over the cross-section. The inte
gration of the kinematic equations gives the shape of the deformed beam as a function
of two deformation functions, the unit extension E, and the rotation <p of the centroid
axis. The equilibrium equations are then derived which allow, within the framework
of static-elastic analysis, for large strains of any magnitude.

2. The hypothesis that the strain tensor is uniaxial requires the linear variation of
the displacements over the cross-section. This hypothesis is therefore equivalent to
the Bernoulli-Euler hypothesis.

3. The equilibrium equations of the beam are solved by the use of the finite-dif
ference method. The comparison between numerical and analytic solutions shows very
good agreement even for coarse subdivisions. It is therefore anticipated that good
solutions may be expected with the present method for problems for which analytic
solutions are not available.

4. In the present theory extensibility of the beam is taken into account. The com
parisons with the analytic results[5-7J, which assume inextensible cantilever, show
that the extensibility has no effect on the results.

5. The static analysis presented here sets no limits to the magnitude of the de
formation. In an actual structure these limits may be defined by the dynamic instabil
ities.

Acknowledgement-This work was supported by the Research Council of Slovenia under the Contract C2
0138-792.
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